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a b s t r a c t

Plug-in Hybrid Electric Vehicles offer a promising solution for the increasing CO2 emission problem.
However, the improved economy strongly depends on the energy management strategy. Traditional
rule-based strategies are no more practical considering the increasing complexity in control objectives.
In this study, an adaptive online Reinforcement Learning (RL) agent is developed, which learned an
energy management strategy with a near-optimal performance. A novel hybrid approach is proposed
to integrate the agent into the existing rule-based hybrid control unit architecture with a limited oper-
ation domain for more practicality and suitability to series-production control systems. Dynamic
Programming (DP) and rule-based strategy are used to benchmark the developed RL agent performance.
The objective is to minimize the vehicle’s total fuel consumption and the frequent engine on/off switch-
ing to improve driver comfort and vehicle drivability. Several RL-based algorithms have been experi-
mented and as a result, an Extended-Deep Q-Network (E-DQN) agent is proposed by this paper,
trained on one cycle, and deployed on two other cycles with different onboard energy levels to evaluate
the performance. The paper findings showed that E-DQN outperformed the rule-based strategy achieving
up to 10.46% improvement in fuel economy closer to the DP performance alongside providing adequate
compliance with the vehicle drivability and driver comfort objectives.
� 2023 Karabuk University. Publishing services by Elsevier B.V. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

1.1. Motivation

Plug-in Hybrid Electric Vehicles (PHEVs) showed significant
improvement in fuel consumption and CO2 emissions over the last
decade. However, the performance superiority depends on the
quality of the on-board Energy Management Strategy (EMS). The
emerging technologies such as connected vehicles and automated
driving increased the complexity of the EMS control objectives.
Traditional hand-crafted rule-based approaches are robust, reliable
and computationally affordable. However, they do not guarantee
optimality with several objectives in a multi-domain, nonlinear
and time-varying systems. Accordingly, the need for more intelli-
gent controllers becomes vital for future vehicles.

1.2. Related work

Under the assumption of a complete prior driving cycle’s
knowledge in a finite horizon, several scholars used Dynamic Pro-
gramming (DP) as a global optimization-based EMS to solve the
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problem for an optimal solution [2–6]. Although the developed
strategy is only valid for this cycle and is impractical to generalize
for others, DP is used to benchmark other sub-optimal real-time
controllers.

There are several contributions such as instantaneous
optimization-based EMSs such as Adaptive Equivalent Consump-
tion Minimization Strategy (A-ECMS) introduced by C. Musardo
et.al where the equivalent cost k is estimated in real-time [7] while
Guo et al. implemented a Model Predictive Control (MPC)-based
EMS, with a novel velocity prediction method adopting Quadratic
Programming [8]. Moreover, a Particle Swarm Optimization-
based nonlinear MPC strategy (PSO-based MPC) is proposed in
[9] saving 10% in the fuel consumption in comparison to the
Charge-Depletion Charge-Sustaining (CDCS) strategy. The afore-
mentioned approaches offered a feasible solution to real-time
Hybrid Control Units (HCUs), however the trade-off between con-
trol objectives, controller performance in real-time, tuning effort,
and vehicle hardware capabilities are difficult to balance [10].
Reinforcement Learning (RL)-based energy management
approaches in PHEVs took immense attention of the Artificial Intel-
ligence (AI) community due to the ability to learn control policies
through interaction without being explicitly programmed on a cer-
tain strategy.

According to the RL methods classification introduced by Xiao-
song, et.al [11], simplex algorithms such as Q-learning, Dyna and
State-Action-Reward-State-Action (SARSA); and hybrid algorithms
such as Deep Q-Network (DQN), Proximal Policy Optimization
(PPO), Asynchronous Advantage Actor Critic (A3C), were used by
several researchers and achieved substantial improvement to the
performance in PHEV’s EMSs.

A simplex model-free RL algorithm such as TD(k)- learning was
used by both Yue et al. in a super-capacitor Hybrid Electric Vehicle
(HEV) [12] and Lin et al. in a thermal HEV [13]. The former
achieved 10% less energy dissipation compared to the best baseline
management policy while the latter attained improvement in fuel
economy by 42%. Qi et al. used DQN, as a hybrid RL algorithm, to
control the torque split ratio and it improved the fuel consumption
up to 16.3% [14]. Actor-critic algorithm was utilized by He et al.
achieving 89% of the fuel economy of DP with unknown driving
conditions [15]. Furthermore, Zhu e al. introduced more advanced
hybridization in RL algorithms designing the optimal speed and
power depletion by the virtue of connectivity look-ahead informa-
tion and mapping features [16]. The problem was formulated as a
Partially Observable Markov Decision Process (POMDP) solved by
actor-critic algorithm which saved 17.4% more fuel compared to
the baseline controller.
Fig. 1. The configuration of the P2-PHEV used in this research.
1.3. Contribution

The contribution of this paper is developing an advanced online
onboard energy management strategy using Deep Reinforcement
Learning (DRL) which provides improvement to the vehicle fuel
consumption while maintaining the level of driver comfort and
vehicle drivability of the currently used rule-based approach.

More importantly, the novelty of this work and the distinction
among other contributions is that the developed strategy does
not replace the whole control unit, but only is incorporated on a
limited domain. This domain includes certain powertrain operating
modes while other modes are controlled by the rule-based
approach. The determination of torque distribution between
propulsion machines and other component state requests for each
mode remains the responsibility of the conventional rule-based
controller.

This approach has several advantages:
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� The RL action space is narrowed, therefore it needs less compu-
tational resources to obtain a good policy and has higher poten-
tial for online real-time applications.
� System constraints, safety, diagnosis, and protection topics can
be included in the control logic while maintaining verification
and validation, requirements engineering, and other parts of
the series production process on a high-quality level.

1.4. Paper outline

The rest of this paper is organized as follows: Section 2 presents
the details of the vehicle model in MATLAB environment, based on
the P2 powertrain configuration, utilizing the existing HCU logic
derived from the Simulink High Fidelity Model (HFM) provided
by the industrial partner, AVL List GmbH. Section 3 presents the
RL-based EMS which is proposed to enable real-time control apply-
ing the Q-learning algorithm. Several techniques such as tabular Q-
learning and Deep Neural Networks (DNNs) are experimented. The
proposed methodology combined some of these techniques into an
optimized E-DQN agent. In Section 4, this agent is tested and ver-
ified in a model-in-the-loop environment against the baseline EMS
and the global optimization technique that provides the optimal
EMS. Finally, Section 5 summarizes the findings, draws the conclu-
sion and recommends the subsequent steps for future research.

2. Technical framework

2.1. Vehicle characteristics

The vehicle considered has a P2 configuration which locates the
Electric Machine (EM) on the gearbox input, after the clutch, offer-
ing higher efficiency without the drag torque losses of the Internal
Combustion Engine (ICE) [17], as shown in Fig. 1. The main vehicle
parameters are listed in Table 1.

A quasi-static vehicle model for P2-PHEV is sufficient to main-
tain the vehicle physical causality and provides a plant model to
develop the agent quickly and efficiently compared to using the
HFM in training.

Considering the vehicle moves on a road with inclination h in

Fig. 2, the power demand Pd depends on the drivetrain internal

power loss Ploss, and external forces Fext as given by Eq. 1.

Pd ¼ Ploss þ Fext � Vð Þ ð1aÞ
Pd ¼ Tloss �xð Þ þ Faero þ Ftire þ Fgrav ity þ Finertia

� � � V ð1bÞ
Pd ¼ Tloss �xð Þ þ 1

2
qACdV

2 þmg � cos hð ÞCr þmg � sin hð Þ þma
� �

� V

ð1cÞ
In Eq. 1,x is crankshaft rotational speed, q is the air density, A is the
frontal area, Cd is the aerodynamic drag coefficient, Cr is the rolling



Table 1
Component parameters of the P2-PHEV model, source: AVL DSP team.

Component Parameter Value

Vehicle Total mass 1998 kg
Frontal area 2.349 m2

ICE Type 1.2L TGDI Gasoline Engine
Max power 102 kW @ 5500 rpm

EM Type Permanent Magnet Synchronous
Motor

Max power 94 kW
Battery Capacity 14.71 kWh

Nominal voltage 350 V
Max current 450 A
Usable SoC range 20% - 95%

Transmission Type 7-speed dual-clutch
Gear ratios [16.803 9.454 6.323 4.709 3.497 2.776

2.385]
Others Electrical auxiliary

load
500 W

Fig. 2. Vehicle free-body diagram.

Fig. 4. EM efficiency maps, source: AVL DSP team.
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resistance coefficient, m is vehicle mass, h is the inclination angle,
and V is the current vehicle speed. The drivetrain Tloss results from
the internal mechanical friction losses depending on the rotational
speed, the torque, and the gear selected.

Vehicle model components are developed based on mathemat-
ical models and empirical performance maps. The ICE has a quasi-
static fuel consumption model with neglected engine transients
which are much faster than the vehicle dynamics. The fuel con-
sumption is described by Eq. 2 which is plotted as the ICE Brake-
Specific Fuel Consumption (BSFC) map in Fig. 3 where xICE and
TICE are the engine rotational speed and torque respectively.

_mfuelICE ¼ f xICE; TICEð Þ ð2Þ
Similarly, the EM model calculates the motor efficiency gEM as a
function of the motor rotational speed xEM and the torque TEM gov-
erned by Eq. 3 for both modes, the motor in the positive torque
region and the generator in the negative torque region Fig. 4.
Fig. 3. ICE BSFC map (g/kWh), source: AVL DSP team.
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gEM ¼ f xEM; TEMð Þ ð3Þ
The battery is modeled based on the Thevenin model [18] with an
equivalent electric circuit configuration shown in Fig. 5 where the
battery’s State of Charge (SoC) is modeled with Eq. 4.

_SoC ¼ �1
QBat

�
VOC �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V2

OC � 4PBat � RBat

q
2RBat

ð4Þ

The equation parameters are open-circuit voltage VOC , battery inter-
nal resistance RBat , battery terminals consumed power PBat , and bat-
tery capacitance QBat . Battery pre-determined maps are used to
estimate the Open-Circuit Voltage (OCV) and Internal Resistance
(IR) only at 25 �C for model simplicity as shown in Fig. 6. The min-
imum and maximum battery SoC thresholds are set to be [20%, 95%]
for the sake of battery health. Fig. 7

2.2. Hybrid control units

The HCU works coherently with several vehicle subsystems
where the input signals combined with the driving situation are
processed and the target ‘‘optimum” settings of drivetrain compo-
nents (‘‘optimum” hybrid operation mode) are selected. The 6
operation modes for the P2 configuration are classified as fixed
modes and free modes according to Ambühl et al. [19] as follows:

� Fixed modes are restricted in selection by certain fixed rules as
follows: 1) Additive Boost (acronym: AB {mode index: 1})
which is selected when the demanded traction torque exceeds
the maximum ICE torque and EM supplies the extra torque. 2)
Recuperation (R {7}) which is a regenerative breaking mode
that uses the generator’s negative torque to slow down the
vehicle and charge the battery. 3) Open Drive (OD {8}) that
turns off the ICE and enables the EM to control the transmission
oil pump which controls the clutches, when the vehicle is
stationary.
Fig. 5. Battery’s equivalent electric circuit based on Thevenin’s model [18].



Fig. 6. The HV battery characteristics at 25 �C, source: AVL DSP team.

Fig. 7. Hybrid mode requests function in the generic P0-P4 HCU architecture,
source: AVL DSP team.
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� Free modes are selected in the time steps when several modes
are available to select from and the energy distribution decision
is crucial for accomplishing the optimization target as follows:
1) Conventional Drive (CD {0}) where ICE is the only propul-
sion source and supplying the low voltage auxiliaries. 2) Opti-
mum Generation (OG {3}) where the demanded torque is low
and the ICE load point can be increased to a better fuel-
economy location. The EM works as a generator for charging
the HV battery with the leftover power from the ICE. 3) Electric
Drive (ED {6}) which enables the EM to propel the vehicle.

3. Methodology

Reinforcement Learning, as a subset of machine learning, is
used for solving control problems, allowing the agent to interact
with the environment and learn the ideal policy by reinforcing or
inhibiting patterns of behavior to maximize the reward. The agent
applies sequential decisions and learns through a delayed environ-
ment feedback which makes it more suitable for applications in
real-time such as the PHEV’s EMS. The reader is referred to [20]
for the more details about RL elements such as policies, reward
functions, value functions, and environment model.

3.1. Problem formulation

The RL agent for P2-PHEV has a continuous state space defined
by sk ¼ SoCk; Tdk ;Vk;Dremk

; Eonk

� �
where at time step k, SoCk is the

battery state of charge, Tdk is the driver torque demand, Vk is the
vehicle velocity, Dremk

is the trip remaining distance and Eonk is
the engine on/off state. Dremk

is included in the state space after
several experiments to give the agent insight over proceeding in
the cycle and plan the SoC depletion trajectory accordingly. Eonk

is included for later use in the RL reward function definition to
minimize the engine on/off switching frequency to improve driver
comfort and vehicle drivability. The action space is discrete where
the control variable, the driving mode selection, is
ak 2 0;1;3;6;7;8f g. The P2-PHEV’s discrete-time space control
4

optimization problem and system constraints are described in
Eqs. 5 to 11.

SoCkþ1; Tdkþ1 ;Vkþ1;Dremkþ1 ; Eonkþ1
� �
¼ f SoCk; Tdk ;Vk;Dremk

; Eonk
� �

; ak
� �

; k ¼ 0;1; . . .n� 1 ð5Þ

min Jp s0ð Þ ¼ lim
n!1

E
Xn�1
k¼0

ck � r sk; akð Þ
( )

ð6Þ

Subject to

ak 2 0;1;3;6;7;8f g ð7Þ

SoCmink 6 SoCk < SoCmaxk ; SoC0 ¼ SoCinit ð8Þ

TICEmink
6 TICEk < TICEmaxk

ð9Þ

TEMmink
6 TEMk

< TEMmaxk
ð10Þ

IBatmink
6 IBatk < IBatmaxk

ð11Þ
3.2. Tabular Q-learning based EMS

The tabular Q-Learning algorithm updates the Q-value for each
state-action pair using Bellman Eq. 12 until the Q-function con-
verges to the optimal Q-function (Q �) in an approach called the
iteration of values [20].

Q sk; akð Þ  Q sk; akð Þ þ a rk þ cmax
a

Q skþ1; að Þ � Q sk; akð Þ
h i

ð12Þ

Q-function is represented in a table called Q-table whose rows rep-
resent the states, and the columns represent the actions. Thus, the
table dimensions are the number of states multiplied by the num-
ber of actions. Continuous state space is not possible as the Q-
table number of rows would be infinite, and accordingly, state-
space discretization is a necessity. The P2-PHEV’s EMS algorithm
based on a model-free Q-learning RL agent is represented in
Algorithm1.

Algorithm1: Model-free Q-learning algorithm for P2-PHEV

1: Set values for learning rate a, discount factor c, epsilon �,
epsilon decay d�

2: Initialize Q s; að Þ to zeros
3: for episode = 1: number of episodesdo
4: Reset environment with s0
5: for k = 1: number of steps per episodedo
6: With probability �, select a random action ak
7: Otherwise, select ak ¼ argmaxQ s; að Þ
8: Execute action ak, and observe reward rk and state skþ1
9: Update Q with bellman equation:

Q sk; akð Þ  Q sk; akð Þ þ a rk½ þcmaxaQ skþ1; að Þ � Q sk; akð Þ�
10: s s0; � � � d�
11: end for
12: end for
3.3. Deep Q-learning based EMS

The DQN algorithm, first proposed by DeepMind [21], is used to
estimate and update the Q-values of each state-action pair in a
given environment. The agent developed in this research has the
following characteristics:



Fig. 8. The proposed RL-based HCU architecture.

Fig. 9. RL agent incorporating the DQN’s neural network and action masking.
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3.3.1. NN architecture
The algorithm’s Neural Network (NN) has an input layer with

five neurons fed by the state values, four hidden layers each of
32 neurons and Rectified Linear Unit (ReLU) activation function,
and an output layer estimating the Q-value for each one of the
six actions. Various studies confirmed that the network architec-
ture highly affects the agent performance [22,23]. After consider-
ing other contributions tackling similar problems in RL [5,24–26],
a separate optimization study was conducted to select the best
NN architecture.

The agent collected 50 k experience tubles, following a random
policy, which were postprocessed to accumulate the episodic
reward and calculate the Q-value for each tuble. Afterwards, sev-
eral NN architectures were trained and tested on different datasets
in a supervised learning fashion to calculate the Root Mean Square
Error (RMSE) as training and validation errors. The aforementioned
architecture was selected due to achieving the minimum RMSE
among others which indicates the best ability for the NN to learn
and approximate the Q-function efficiently.

3.3.2. DDQN with s-soft update
The Double Deep Q-Network (DDQN) algorithm, introduced by

Hasselt et al. [27], is used to reduce the observed Q-values overes-
timation bias and stabilize the training by decoupling the action
selection from the target Q-value estimation using two different
NNs; policy and target networks. Lillicrap et al. proposed an
improvement to the DDQN called ’s-soft update’ which controls
the moving target and stabilizes the learning process. The s value
lies in the range of [0,1] where a value in between makes the target
network weights slowly track the learning policy network instead
of directly copying the weights, while s ¼ 1 makes it the algorithm
a normal DQN [28]. The authors claim that such minor change
guarantees convergence to a robust solution by moving the unsta-
ble function approximation problem closer to a supervised learn-
ing problem.

3.3.3. N-steps bootstrapping
The Bellman equation for estimating the Q s; að Þ of each state-

action pair, Eq. 13, represents the 1-step Temporal Difference
(TD) which is often called TD(0) [20].

Q st ; atð Þ ¼ rt þ cmax
a

Q stþ1; að Þ ð13Þ

The equation is recursive and Q stþ1; atþ1ð Þ can be replaced by its
estimate from stþ1 assuming atþ1 is chosen optimally or near opti-
mally. Unrolling it for n-times is called n-steps bootstrapping tech-
nique. It was experimented by Fedus et al. [29] and revealed that
the agent’s performance relies heavily on the proper selection of
the n-value which they suggested to be small, e.g., 3 or 4.

3.3.4. Action masking
Several functionalities are defined with the HCU’s internal logic

which decides on the available modes and represent them in a log-
ical ‘‘mode enabler” vector, Fig. 8. Action masking, proposed by
Vinyals et al. [30], uses this vector, after changing the 0 logic to
�1, and multiply it by the network estimated Q-values as shown
in Fig. 9. Accordingly, the best mode of only the available modes
will be selected according to the RL policy. Other approaches sug-
gested including the agent only in the free modes and bypass it in
the fixed modes segment. This approach was tested, and the agent
faced difficulties in learning the correct value function that repre-
sents the future cumulative rewards, as the agent is not aware of
part of such rewards if bypassed, hence it never converged. The
advantage of our approach is that the agent will have full-observa
bility/controllability over the environment even with the action
5

masking presence, therefore the value function converges, and a
proper policy is built.
3.3.5. Reward function
The reward signal represents the search objective of the RL

problem that incentivizes/inhibits the agent behavior in the envi-
ronment, hence affects the performance. Various scholars noticed
that gradual battery SoC depletion, sustaining the battery charge
over the entire trip, tends to provide a near-optimal performance
for the EMS problem. Accordingly, space-domain indexed SoC ref-
erence is proposed to guide the SoC depletion rate gradually in the
entire trip taking into account the prior knowledge of the trip dis-
tance D [31,32]. The trip distance can be estimated from the navi-
gation systems widely available nowadays. Additionally, Li et.al
proposed a model called History Cumulative Trip Information
(HCTI) to estimate its value with experimental proven accuracy
from historical record [31]. The reward function defined utilizing
the traveled distance d 2 D and the engine change state indicator
Eswitch (starting-up or shutting-down) is shown in Eq. 14. v;/ and
w are set to 40, 36 and 0.7 respectively after careful tuning and
the hyperbolic tangent function is used to bound the reward in
the [-1,1] range for more stability in the NN estimations.

Reward ¼ � tanh / � jSoC � SoCreferencej þ v � _mfuel þ w � Eswitch

� �
ð14Þ
SoCreference ¼ SoCinitial � 1� d=Dð Þ þ d=D � SoCfinal ð15Þ

Combining the previous techniques into an extended version of the
DQN agent, the E-DQN model-free RL agent is represented in
Algorithm2.



Table 2
The training hyperparameters of the Q-learning algorithm.

Learning rate a 0.01 Epsilon decay rate d� 0.01
Discount rate c 0.995 Epsilon minimum d�min 0.1
Epsilon �start 1

A. Mousa Engineering Science and Technology, an International Journal 43 (2023) 101434
Algorithm2: Model-free DDQN algorithm for P2-PHEV

1: Set values for RL training parameters and NN
hyperparameters

2: Initialize replay memory D with capacity N
3: Initialize policy network Q with random weights h

4: Initialize target network bQ with random weights h�

5:for episode = 1: number of episodes do
6: Reset environment with s0
7: for k = 1: number of steps per episode do
8: With probability �, select a random action ak
9: Otherwise, select ak ¼ argmaxQ s; að Þ
10: Execute action ak, and observe the n-steps

bootstrapped

reward
Pkþn

k r and state skþnþ1

11: Store transition sk; ak;
Pkþn

k r; skþnþ1
	 


in memory D

12: s s0; � � � d�
13: Sample random minibatch of sj; aj; rj; sjþ1

� �
from

memory D

14: Set yj ¼
rj ifsjis terminal
rj þ cmaxaQ̂ sjþ1; a; h

�� �
otherwise

�
15: Perform gradient descent step on yj � Q sj; aj; h

� �	 
2

with
respect to the policy network parameters h

16: Update the target network bQ parameters
ĥ ¼ shþ 1� sð Þh�

17: end for
18: end for
4. Results and Discussion

4.1. Simulation environment

The driving cycles used in this research are New European Driv-
ing Cycle (NEDC), Highway Fuel Economy Driving Schedule
(HWFET), Urban Dynamometer Driving Schedule (UDDS) [33],
and GRAZ cycle which is an in-house cycle provided by AVL team.
The vehicle model’s accuracy influences the optimality of the
trained RL control strategy; therefore, model validation experi-
ments were conducted to quantify the estimation error for fuel
consumption and SoC change compared to the HFM. The experi-
ments used the NEDC cycle repeated six times to cover the vehi-
cle’s All-Electric Range (AER) with different initial SoC levels. The
results assert that SoC and fuel consumption differences are negli-
gible where the SoC difference oscillates between �0.3: 0.2% while
the accumulated fuel consumption difference ranges between 30:
50 ml, which is 1.1% of the total fuel consumption. It is concluded
that the vehicle model is accurate enough to be used instead of the
HFM for further experimentation.

4.2. Tabular Q-learning based EMS

Algorithm1 showed how the tabular Q-learning method is
incorporated into an RL agent. The environment state space
SoC; Ttot ;V ;Drem; Eonð Þ is discretized to (40, 20, 20, 20, 2) resulting
in a Q-table with dimensions of (640,000 x 6). The training hyper-
parameters are tuned after several experiments and summarized
in Table 2.

Fig. 10 demonstrates the Q-learning performance results on the
GRAZ cycle with SoCinit ¼ 75%. Fig. 10a shows the episode cumula-
tive return and the Q0 which represents the estimated Q-value at
6

the beginning of the episode. Q0 represents the agent’s expected
cumulative return and the closer it is to the true return, the better
the agent can expect future rewards, and accordingly, the best
actions can be taken to maximize the cumulative episode reward.
Nevertheless, Q0 never approached the true return value which
reveals that the agent is not able to learn the environment cor-
rectly as shown in Fig. 10a.

The Q-learning based agent suffers from the curse of dimen-
sionality due to discretization [32]. Although the discretization
level used causes the Q-table to be huge 640; 000x6ð Þ and requires
large memory in the HCU to handle, it is not sufficient for proper
segregation and differentiation between adjacent states. The his-
togram in Fig. 11 shows how frequently each state is visited during
a single episode. The results reveal that the majority of the states
are visited more than once, up to 658 times. In discrete state-
space environments such as the grid world, each state-action pair
holds a Q-value that fully represents the discounted cumulative
return following the optimal policy till the episode end according
to the Q-value definition. However, in the discretized continuous
state space environments such as PHEV’s, the discretized state-
action pairs are visited more frequently with different Q-values
which causes the Q-function to diverge and never approximate
its true representation. Fig. 10b shows the true cumulative return
and the Q-value for each time-step/state in the current episode.
Proceeding with the agent training, the trajectory of the estimated
Q-values shall follow the true return especially with small values
of the exploration term �. However, due to the coarse discretization
and the curse of dimensionality problem, both curves never fol-
lowed each other with different hyperparameters in several exper-
iments. The tabular Q-learning approach is concluded not to be
suitable for future expanded applications with large state space
environments such as PHEVs.

4.3. Deep Q-learning based EMS

4.3.1. Training Data
Machine learning researchers recommend preprocessing the

input data to the NN to be normalized in a range of [0–1] or stan-
dardized with a zero mean and a standard deviation of one [34].
Input data normalization was applied instead of standardization
for more practicality regarding operating the RL agent with new
unseen cycles which have unknown means and standard devia-
tions but known ranges instead.

4.3.2. N-steps bootstrapping
Four agents were tested using the same hyperparameters but

with varying the n-steps for each. Fig. 12a, representing the TD
(0) agent with n ¼ 1, had a diverging Q-function, however, the
agent started to converge very slowly using n ¼ 3 as the case in
Fig. 12b. Better performance is achieved by setting n ¼ 16 as
shown in Fig. 12c in the contrary to the recommendation of setting
the n-value to be small, around 4, for better off-policy behavior
[29]. However, it is noticed that decaying the n-value from 16 to
6, by reducing 1 each 10 episodes, showed the best performance
as demonstrated in Fig. 12d. After episode 100, the n-value was 6
which helped the agent to utilize the experience available in the
replay buffer to learn more efficiently for 80 more episodes closer
to the off-policy behavior. The Q0 value started to stabilize after
episode 100 even with oscillations due to the randomness in the



Fig. 10. Q-learning agent results on the GRAZ cycle.

Fig. 11. Discretized states visit frequency per episode.

Fig. 12. n-steps bootstrapping results in DRL training.
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action selection and the reward tried to come closer and closer by
proceeding in the training.
4.3.3. E-DQN agent for the P2-PHEV
The previous results are combined into an extended version of

the DQN agent (E-DQN) which is a model-free RL agent with decay-
ing n-steps bootstrapping, and s-soft update. The training set of
optimal hyperparameters are defined in Table 3 after several tun-
ing experiments.

Fig. 13a shows the agent training results where after limited
number of episodes, the Q0 approached the cumulative reward
7

which reflects building proper knowledge about the environment
while the training loss was decreasing to convergence in Fig. 13b.

The trained agent behavior was tested on the same cycle follow-
ing the policy completely with no exploration. The agent achieved
98.47% of the DP optimal results while the CDCS achieved 96.59%.
The difference between the CDCS and RL is not significant in the
HWFET cycle because the whole cycle is in a high-speed range
which means the optimum engine operation zone in addition to
a little amount of energy available onboard to be utilized with
SoCinit ¼ 30%. Accordingly, the trained agent is simulated on 6-
UDDS (six adjoining UDDS cycles to exceed the AER) and GRAZ
cycle to test its generalization capability and robustness with dif-
ferent SoCinit levels. The numerical results are summarized in
Table 4 while the performance is shown in Fig. 14 and Fig. 15.

Different SoCinit levels highly affected the performance of the E-
DQN agent compared to the CDCS and DP. With SoCinit ¼ 25%
shown in Fig. 14a, the agent almost followed the CDCS strategy
due to the lack of available electric energy onboard, therefore
proper energy utilization is not possible. However, at higher
SoCinit levels such as 50% and 75% shown in Fig. 14b and Fig. 14c
respectively, the RL agent was closer to the DP behaviour rather
than the CDCS by depleting the electric energy wisely throughout
the whole trip. This enabled the RL agent to operate the ICE on
optimal load points as shown in engine BSFC plot, Fig. 14d. The
RL agent was closer to the ICE optimum operation line and the
DP which interprets the 10.46% improvement in the fuel economy.

Moreover, E-DQN agent was tested on GRAZ cycle where the
performance of the three SoCinit levels is demonstrated in Fig. 15.
For a better understanding of the results, the mode selection for
the three strategies with 75% SoCinit is plotted in Fig. 15e for GRAZ
cycle. The CDCS strategy started depending on the ICE where SoC
begins to be sustained only after reaching the minimum threshold.
On the contrary, the DP selected the Conventional Drive (CD) mode
once starting the highway region close to time step 1600s where
the velocity is relatively high. Moreover, the Electric Drive (ED)
mode was used instead for the other cycle segments where the
velocity is relatively low.

The main unique strategy of the DP is to use the ICE more in the
high-speed segments and depends completely on the ED mode for
all the other low-speed segments. Such a strategy strongly concurs
with the ICE system characteristics of working more efficiently at
high velocities as illustrated in Fig. 15d showing the ICE load point
locations on the BSFC map. The DP located the load points mostly
in the central region within 240 g/kWh BSFC while the ICE load
points in the CDCS strategy are located on the left region, which
is much less optimal. In addition to the ICE utilization, DP tended
to deplete the SoC gradually through the entire trip which coin-
cides with the conclusion derived previously in [31,32].

On the other side, the RL used a different strategy of prioritizing
the ED mode always till the 1850s where a quick drop in the SoC



Table 3
The training hyperparameters of the E-DQN agent.

Learning rate l 0.001 Epsilon decay rate d� 0.005
Learning rate decay dl 0.0005 Epsilon minimum d�min 0.1
Learning rate update frequency 30 eps. n-steps 16–6
Learning rate minimum lmin 1e-05 Experience buffer size 10,000
Epsilon �start 1 NN optimizer ADAM

Fig. 13. E-DQN agent training results on HWFET cycle with 30%SoCinit .

Table 4
E-DQN generalization performance results on 6-UDDS and GRAZ cycles (Values in bold represent the best result).

6-UDDS Cycle GRAZ Cycle

25% 50% 75% 25% 50% 75%

Final SoC (%) CDCS 20.6% 20.5% 20.5% 20.5% 20.5% 20.5%
DP 20.8% 20.6% 20.6% 20.4% 20.5% 20.4%
RL 20.8% 20.8% 20.8% 20.5% 20.4% 20.5%

Fuel Consumption (ml) CDCS 3962.8 2907.3 1547.6 3804.0 2676.2 1595.3
DP 3873.5 2656.1 1326.4 3788.5 2592.6 1404.2
RL 3924.2 2721.7 1409.7 3797.3 2681.3 1483.8

Fuel Economy(%) CDCS 97.70% 90.54% 83.32% 99.59% 96.78% 86.39%
DP 100% 100% 100% 100% 100% 100%
RL 98.69% 97.53% 93.72% 99.77% 96.58% 94.33%

Number of engine starts CDCS 34 72 60 66 72 32
DP 308 320 210 103 76 53
RL 62 66 106 68 33 50
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takes place as shown in Fig. 15c. The CD mode is used instead till
the end of the highway segment where the ED mode is prioritized
again after the 2400s. The CDmode is used for some segments later
to maintain the SoC depletion trajectory within a proper rate while
trying to minimize the number of engine starts to maximize the
total episode reward. Fig. 15d shows that the adjacency between
the DP and the RL is closer than between the RL and the CDCS con-
firming the cognition of better engine utilization and higher fuel
economy.

The results in Table 4 validate the surplus of the E-DQN agent
compared to the CDCS strategy particularly in the high SoCinit levels
where much electric energy is available and can be utilized prop-
erly. The RL agent outperformed the CDCS with more than 10%
and around 8% closer to DP performance in the 6-UDDS and the
GRAZ cycles respectively with 75% SoCinit . However, its perfor-
mance was very close to the CDCS by less than 1% improvement
with 25% SoCinit in both cycles.

Furthermore, the number of engine-starts for the RL agent was
kept in an acceptable range with an average of one engine start
each 96.3s for the GRAZ cycle compared to one start each 61.8s
and 89.3s in the DP and CDCS respectively. However, the CDCS
achieved longer time for each engine start with an average of
155.4s in the 6-UDDS compared to 30.5s and 105.5s for the DP
and the RL respectively.
8

5. Concluding Remarks

5.1. Summary and conclusion

As one of the main categories in the automotive industry elec-
trification process, PHEVs offer a promising solution for the
increasing CO2 emission problem. Their improved economy
strongly depends on the HCU’s control strategy. Navigation, com-
munication devices, and sensors inspired a growing development
of the advanced energy management strategies especially that
the CDCS strategy is neither simple nor advantageous anymore
with the increasing control objectives.

Several scholars proved that advanced AI-based strategies such
as reinforcement learning EMSs can significantly improve the fuel
economy of PHEVs. This study introduced an adaptive online learn-
ing RL agent into the existing HCU architecture. DP results are used
to benchmark the developed RL algorithms which solved the EMS
for near-optimal solutions. The development process began with
formulating the control problem mathematically as an infinite-
horizon optimal-control problem. The mathematical formulation
is a function of the battery SoC, driver torque demand, vehicle
speed, remaining trip distance, and the engine on/off status. The
objective is to minimize the total fuel consumption and the fre-
quent engine switch. Accordingly, the design process reasonably



Fig. 14. E-DQN performance on the 6-UDDS cycle with different SoCinit .
Fig. 15. E-DQN performance on the GRAZ cycle with different SoCinit .
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considered the drivability and comfort requirements instead of
sacrificing them too much for the sake of fuel economy.

As a result, an optimized E-DQN agent is proposed by the
research, trained on the HWFET cycle, and deployed on other
two cycles to evaluate the performance. The E-DQN’s control strat-
egy outperformed the CDCS strategy in terms of fuel economy, up
to 10.46% improvement, alongside providing adequate compliance
with the control objectives. The research findings strongly accord
to the necessity of enabling AI-based control strategies into the
next generation of automobiles particularly in the era of autono-
mous driving and connected vehicles. The control objectives are
becoming more and more complex for traditional methods to han-
dle, thus AI-enabled technologies shall be prioritized by OEMs for
further research and development.
5.2. Future prospects and recommendations

The accelerating development of computational resources in
recent decades enabled novel complex and intelligent algorithms
to be involved in modern control systems. Advancements in the RL
field incorporating deep learning and neural networks form the next
trend for the RL-based PHEVs energy management strategies. Inte-
9

gration with the Intelligent Transportation Systems (ITSs) to con-
struct a smart city or a smart grid is coming soon with more
comprehensive and complicated optimization control objectives. In
the future connected environment, distributed and multi-agent
DRL systems are necessities for cooperative learning between vehi-
cles on the road. The sooner the transition towards intelligent control
systems by automotive OEMs, the better they are prepared and qual-
ified for the upcoming challenges. The research presented an initial
step overlooking the way towards realizing an intelligent adaptive
energy management system for PHEVs. The upcoming research
efforts shall investigate more the following spots:

� DRL algorithms: the DQN algorithm is solely considered by the
research in DRL algorithms. However, other types, such as the
Policy Gradient (PG) family, are promising to be examined
[35] including PPO [36], and A3C [37].
� Multiple objectives: for improved performance, including other
objectives to be optimized such as the battery’s state of health
[38], safety, comfort, user convenience [39], and powertrain
mobility [40], bring additional benefits and are advantageous.
� RL agents testing and validation: besides the theoretical feasi-
bility that is validated by simulation, practical implementation
is necessary to be achieved through real vehicle evaluations.
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Few studies proceeded with their proposed methodologies to
the hardware-in-the-Loop and vehicle-in-the-loop testing.
Therefore, more research efforts shall further examine the
validity of such approaches in real environments.
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